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Abstract— In the present paper we obtain a closed-form
solution for the class of continuous-time algebraic Riccati
equations (ARE) with vanishing state weight, whenever the
unstable eigenvalues are distinct. The AREs in such a class solve
a minimum energy control problem. The obtained closed-form
solution gives insight on issues such as loss of controllability and
it might also prove comparable in terms of numerical precision
over current solving algorithms. Keywords: Algebraic Riccati
equation; Closed-form solution; Controllability; Minimum en-
ergy control; Signal-to-noise ratio.

I. INTRODUCTION

Riccati equations, in particular algebraic Riccati equations

(AREs), are a recurrent and important feature in many

theoretical control design results, see for example [1], [2]

or [3].

The area of Control over Networks, on the other hand,

has been a growing topic of increased interest in recent

years; see for example [4], [5] and references therein. A
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Fig. 1. General problem setting.

line of research reported in [6], [7] (and related work in

[8], [9]), introduced a framework to study the fundamental

limitation in stabilisability of a single-input single-output

(SISO) feedback loop over channels with a signal to noise

ratio (SNR) constraint.

In Figure 1 we observe the particular case of an additive

white Gaussian noise (AWGN) channel located between the

controller and the plant. The channel is defined by P , the

channel input power constraint

P > E
{
u2

}
,

where E is the expectation, and by the channel additive white

Gaussian noise n(t), with zero-mean and power spectral

density Φ. In [6] it has been proved that the AWGN channel

infimal SNR for stabilisability satisfies

P
Φ

>
m∑

i=1

2Re{pi},
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where Re{pi} is the real-part of the (possibly repeated)

unstable poles of the plant model G(s). The same result

holds for output feedback, [6, Theorem II.2], when G(s) is

minimum phase and for state-feedback, [6, Theorem II.1].

In the state-feedback case it is shown that the infimal SNR

for stabilisability result is linked to the solution P of an

algebraic Riccati equation (ARE)

P
Φ

> BT PB,

with vanishing state weight for a state-space representation

(A,B,C, 0) of G(s). Both results are equivalent, suggesting

that it might be possible to express P in closed-form.

In [7] the infimal SNR for stabilisability result is extended

to include a continuous-time unstable (non)-minimum phase

plant G(s) with distinct unstable poles, over an additive

coloured Gaussian noise (ACGN) channel with memory. For

the AWGN channel (which can be seen as a particular case

of an ACGN channel) [7, Theorem 1] reduces to

P
σ2

>
m∑

i=1

m∑

j=1

rir̄j

pi + p̄j

,

where

ri = 2Re{pi}
m∏

j=1
j 6=i

pi + p̄j

pi − pj

, ∀i = 1, · · · , m.

Thus, motivated by the insight that the infimal SNR for

stabilisability problem can be stated as a minimum energy

problem, we analyse in the present paper the class of

continuous-time AREs with vanishing state weight.

The main contribution of the present paper, based on the

infimal SNR for stabilisability results above, is a closed-form

solution for such a class of continuous-time AREs with van-

ishing state weight and non repeated unstable eigenvalues.

To the best knowledge of the author the closed-form solution

obtained here is novel. As a result of the closed-form nature

of the solution, we obtain further insights on the structure of

the minimum energy problem.

The paper is organised as follows: in Section II we present

the closed-form solution for the class of continuous-time

AREs with vanishing state weight. We also present a series

of extensions that derive from such closed-form result. In

Section III we present examples and discuss the interpreta-

tion of some of the results from the previous section. Finally,

in Section IV, we give concluding remarks for the present

work and future directions.
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A companion to the present paper can be found in [10]

where a similar analysis is proposed for the discrete-time

case.

Terminology: let C denote the complex plane. Let C−, C̄−,

C+ and C̄+ denote respectively the open left-plane, closed

left-plane, open right-plane and closed right-plane of C. Let

R denote the set of real numbers, R+ the set of positive

real numbers, R+
o the set of non-negative real numbers and

R
− the set of real negative numbers. Let Z

+ denote the set

of positive integers. A continuous-time signal is denoted by

x(t), and its Laplace transform by X(s), s ∈ C. We use bold

notation to represent a generic matrix A. Similarly, 0 stands

for a matrix, of suitable dimensions, with all its entries set

to zero and I for the identity matrix. Denote the element in

the ith-row, jth-column of a matrix A as [A]i,j .

II. CLOSED-FORM SOLUTION OF THE

CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATION

WITH VANISHING STATE WEIGHT

A. Assumptions

In the present section we present a technical result which

states in closed-form the solution of a class of minimum en-

ergy Riccati equations. The assumptions under consideration

are

1) A minimal realisation (A, B, C, 0) of a plant such

that

A =

[
Au 0
0 As

]

, B =

[
Bu

Bs

]

, C =
[
Cu Cs

]
,

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, Au ∈
R

m×m, Bu ∈ R
m×1, Cu ∈ R

1×m.

2) The eigenvalues of Au are all in C+ and they are all

distinct.

3) Au is diagonal and Bu =
[
1 · · · 1

]T
.

4) The eigenvalues of As are all in C̄−.

Notice that assumption 1) also implies that the pair Au and

Bu is controllable. Also notice that the choice of Au and

Bu in 3) is not restrictive. Indeed from 1) we have that

G(s) = Cu (sI − Au)
−1

Bu
︸ ︷︷ ︸

Gu(s)

+Cs (sI− As)
−1

Bs
︸ ︷︷ ︸

Gs(s)

,

where Gu(s) contains all the unstable distinct poles of G(s)
and similarly Gs(s) all the stable poles of G(s). With the

choice of Au and Bu in Assumption 3), the coefficients of

Cu can be identified from a partial fraction expansion of

Gu(s).

B. Continuous-Time Algebraic Riccati Equation with Van-

ishing State Weight

A continuous-time ARE is given by

PA + AT P = PBR−1BTP + Q. (1)

In the present paper we consider a particular class of such

continuous-time AREs, namely the class with vanishing state

weight, that is Q = 0. This is a class of AREs that we refer

to as the continuous-time minimum energy ARE

PA + ATP = PBR−1BT P. (2)

Under the assumptions for A, B, the unique symmetric pos-

itive semi-definite solution of (2) satisfies (see [11, Lemma

2])

P =

[
Pu 0
0 0

]

,

thus reducing (2) to

PuAu + AT
uPu = PuBuR−1BT

uPu. (3)

C. Main Result

We introduce now a closed-form characterisation of Pu

the non-trivial solution to the minimum energy Riccati equa-

tion in (3).

Proposition 1: ( Closed-Form Solution for R = 1) The

closed-form solution to the minimum energy ARE in (2) with

R = 1 is given by

P̂ =

[

P̂u 0

0 0

]

, (4)

where P̂u solves (3) with R = 1 and is given by

P̂u =










r2
1

2p1

r1r2

p1+p2
· · · r1rm

p1+pm

r2r1

p2+p1

r2
2

2p2
· · ·

...

...
...

. . .
...

rmr1

pm+p1
· · · · · · r2

m

2pm










, (5)

with ri defined as

ri = 2pi

m∏

j=1
j 6=i

pi + pj

pi − pj

, ∀i = 1, · · · , m, (6)

Proof: As a first step let us recognise that matrices Au

and Bu that satisfy assumptions 2) and 3) are given by

Au =








p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...

0 0 · · · pm








, Bu =








1
1
...

1








.

The LHS and RHS of (3), replacing Pu as in (5), are then

given by

LHS =









r2
1 r1r2 · · · r1rm

r2r1 r2
2 · · ·

...
...

...
. . .

...

rmr1 · · · · · · r2
m









,
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and

RHS =








(
r2
1

2p1
+ · · · + r1ri

p1+pi
+ · · · + r1rm

p1+pm

)2

...
(

rmr1

pm+p1
+ · · · + r2

m

2pm

)(
r2
1

2p1
+ · · · + r1rm

p1+pm

)

· · ·
(

r2
1

2p1
+ · · · + r1rm

p1+pm

) (
rmr1

pm+p1
+ · · · + r2

m

2pm

)

. . .
...

· · ·
(

rmr1

pm+p1
+ · · · + rmri

pm+pi
+ · · · + r2

m

2pm

)2








.

The rest of the argument is to prove that the LHS is equal

to the RHS. Consider first the elements in the diagonal for

which we want to prove that r2
i is equal to

(
rir1

pi + p1
+ · · · + rirm

pi + pm

)2

= r2
i ,

by use of Lemma 2 in the Appendix. Next consider any

element outside the main diagonal on the RHS of (3)

(
rir1

pi + p1
+ · · · + rirm

pi + pm

)

(
rjr1

pj + p1
+ · · · + rjrm

pj + pm

)

= rirj ,

by again use of Lemma 2 in the Appendix. Therefore, we

conclude that P̂u is indeed the closed-form solution of (3)

when R = 1, and thus P̂ is the solution of (2), which

completes the proof.

D. Extensions and Derived Results

We now extend the result of Proposition 1 to the general

case of R = λ ∈ R.

Corollary 1: (Closed-Form Solution for R = λ) The

closed-form solution to the minimum energy ARE in (2)

with weight R = λ is given by

P̂λ =

[

P̂λ
u 0

0 0

]

,

where P̂λ
u solves (3) with R = λ and is given by

P̂λ
u = λ










r2
1

2p1

r1r2

p1+p2
· · · r1rm

p1+pm

r2r1

p2+p1

r2
2

2p2
· · ·

...

...
...

. . .
...

rmr1

pm+p1
· · · · · · r2

m

2pm










,

with ri, ∀i = 1, · · · , m, defined as in (6).

Proof: From Proposition 1 we have that P̂u satisfies

the minimum energy ARE in (3) with R = 1

P̂uAu + AT
u P̂u = P̂uBuB

T
u P̂u.

which, since λ is a scalar, is equivalent to

P̂uAu + AT
u P̂u = P̂uBuλ−1BT

u λP̂u.

Now multiply both sides of the above expression by λ and

define P̂λ
u = λP̂u

P̂λ
uAu + AT

u P̂λ
u = P̂λ

uBuλ−1BT
u P̂λ

u,

and thus P̂λ
u satisfies (3) with R = λ, and thus P̂λ satisfies

(2) with R = λ, which concludes the proof.

Corollary 2: (Transformed Closed-Form Solution) Con-

sider a nonsingular transformation of the state T

T =

[
T1 T2

T3 T4

]

, (7)

with T1 ∈ R
m×m, T2 ∈ R

m×n−m, T3 ∈ R
n−m×m

and T4 ∈ Rn−m×n−m. The closed-form solution to the

minimum energy ARE in (2) with weight R = 1 in the

transformed state x̄ = Tx, is given by

P̄ =

[
TT

1

TT
2

]

P̂u

[
T1 T2

]
, (8)

with P̂u as in (5).

Proof: Subject to a nonsingular transformation T the

new matrices Ā and B̄ are given by T−1AT and T−1B

respectively. Consider now Proposition 1 and the minimum

energy ARE in (2) with R = 1 solved by P = P̂. Multiply

both sides by T from the right and by TT from the left

TT P̂AT + TT AT P̂T = TT P̂BBT P̂T.

Since T is nonsingular we can define the change

T−T P̄T−1 = P̂. Replace in the above expression and

rearrange terms according to the properties of transposition

to obtain

P̄Ā + ĀT P̄ = P̄B̄B̄TP.

Thus P̄ solves the “transformed” minimum energy ARE.

Replacing T as in (7) and P̂ as in (4) gives P̄ as in (8)

which concludes the proof.

III. DISCUSSION

A. Numerical Examples and Numerical Comparison with the

Matlab Solution

Example 1: Consider the plant model G(s) =
(s+0.3)

(s+1)(s−2)(s−7) . We recognise Gu(s) and Gs(s) as

Gu(s) =
0.0292(s + 24.25)

(s − 2)(s − 7)
, Gs(s) =

−0.0292

s + 1
.

From imposing Au and Bu as in assumption 3) we have

Au =

[
2 0
0 7

]

, Bu =

[
1
1

]

, (9)

and finally from the partial fraction expansion of Gu(s)

Gu(s) =
−0.1533

(s − 2)
+

0.1825

(s − 7)
,

we obtain Cu as
[
−0.1533 0.1825

]
. We then recognise

p1 = 2 and p2 = 7. From Proposition 1 we have that

r1 = 2p1

(
p1 + p2

p1 − p2

)

= −7.2

r2 = 2p2

(
p2 + p1

p2 − p1

)

= 25.2.

ThBIn3.10

5053

Authorized licensed use limited to: University of Newcastle. Downloaded on February 28,2010 at 19:55:02 EST from IEEE Xplore.  Restrictions apply. 



The closed-form solution P̂u for this example is then given

by

P̂u =

[
r2
1

2p1

r1r2

p1+p2

r2r1

p2+p1

r2
2

2p2

]

=

[
12.96 −20.16
−20.16 45.36

]

and the overall solution P̂ is then given by

P̂ =





12.96 −20.16 0
−20.16 45.36 0

0 0 0





We compare next another example of a direct application of

Proposition 1 to its numerical solution obtained with Matlab.

Example 2: Consider in this example Au and Bu as

Au =







p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4







, Bu =







1
1
1
1







, (10)

where p1 ∈]0, 15], p2 =
√

2, p3 =
√

5 and p4 =
√

7. The

closed-form solution Pu for the minimum energy ARE (3)

for this example is given by

P̂u =









r2
1

2p1

r1r2

p1+p2

r1r3

p1+p3

r1r4

p1+p4

r2r1

p2+p1

r2
2

2p2

r2r3

p2+p3

r2r4

p2+p4

r3r1

p3+p1

r3r2

p3+p2

r2
3

2p3

r3r4

p3+p4

r4r1

p4+p1

r4r2

p4+p2

r4r3

p4+p3

r2
4

2p4









, (11)

with

r1 = 2p1
(p1 + p2)(p1 + p3)(p1 + p4)

(p1 − p2)(p1 − p3)(p1 − p4)
,

r2 = 2p2
(p2 + p1)(p2 + p3)(p2 + p4)

(p2 − p1)(p2 − p3)(p2 − p4)
,

r3 = 2p3
(p3 + p1)(p3 + p2)(p3 + p4)

(p3 − p1)(p3 − p2)(p3 − p4)
,

r4 = 2p4
(p4 + p1)(p4 + p2)(p4 + p3)

(p4 − p1)(p4 − p2)(p4 − p3)
.

(12)

We compare the expression in (11) with the solution resulting

from the Matlab command care, based on [12], by executing

the line

Pm
u = care(Au, Bu, zeros(4), 1),

in Matlab (7.5.0.342 (R2007b)) with Au and Bu as in (10).

To quantify the difference between the closed-form solution

and the Matlab solution, we propose the following error

function

eARE =
∑

∀ i,j

[
PuAu + AT

uPu − PuBuB
T
u Pu

]2

i,j
,

either with Pu = P̂u or Pu = Pm
u . Notice that eARE is

defined as to quantify the square difference between the

LHS and RHS of (3), that is our proposed error function

is quantifying the precision of each Pu solution, either in

closed-form or from Matlab. The result for eARE can be

observed in Figure 2, where the solid line is eARE obtained

with the solution using Matlab, whilst the dashed line is

eARE obtained with P̂u. For both approaches, either closed-

form or Matlab, we observe how for all values of p1 the error

is indeed very small, in the order of -200 (dB) (where (dB)s

are obtained as 10 log10 eARE accounting for the squared

definition of the error function eARE). Also as p1 approaches

p2, p3 or p4 the error tends to grow. Indeed the higher error

value located in Figure 2 at p2, p3 and p4 is signalling the

loss of controllability that occurs when p1 matches any of

these values. In the neighbourhood of such values the quasi-

loss of controllability produces Pu solutions with very high

entries in each of its elements making numerical errors all

the more significant. The higher value in each of the entries

of Pu can also be observed from the expressions for r1, r2,

r3 and r4 in (12). Whenever p1 approaches the values of the

other unstable eigenvalues, then each ri will grow due to the

factor p1−pi (with i = 2, 3, 4) in each of their denominators.

The error at precisely the value of p2, p3 and p4 should grow

to infinity (as the closed-form suggests), but this is not the

case in Figure 2 due to interpolation.

B. Theoretical Comparison with the Matlab Solution

The comparison of the closed-form solution P̂u and the

one obtained with Matlab in the previous example calls for

a closer comparison with the ideas behind the algorithm

implemented in Matlab. From [12] we observe that the

command care, for the proposed class of minimum energy

AREs, solves an eigenproblem defined by the symplectic

matrix

M =

[

Au −BuR−1Bu

T

0 −AT
u

]

.

The solution to the eigenproblem W is such that we have

W−1MW =

[
−Au 0

0 Au

]

, (13)

and Pu = W21W
−1
11 , see for example [13, §15.3]. Define

then, without loss of generality, W to be

W =

[
P−1

u I

I 0

]

,

and its inverse the matrix

W−1 =

[
0 I

I −P−1
u

]

where we have invoked the Woodbury Matrix Identity, see

for example [14, p.502]. We can observe then that in order

to satisfy (13) the following expression needs to hold

AuP
−1
u − BuR−1BT

u + P−1
u AT

u = 0, (14)

which indeed is the case, since by multiplying from the

right and from the left by Pu we retrieve (3). Thus, as

intuition would have it, from Proposition 1 we can also obtain

a closed-form solution to the eigenproblem solved by the

algorithm proposed in [12], that is for R = 1 we have

Ŵ =

[

P̂−1
u I

I 0

]

,
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Fig. 2. Numerical error eARE upon replacing Pu obtained from Matlab, solid line, or in closed-form, dashed line.

and for R = λ we have

Ŵλ =

[(

P̂λ
u

)−1

I

I 0

]

.

Remark 1: Notice that equation (14) is a Lyapunov equa-

tion and as such a closed-form solution for P−1
u in (14) can

easily be found independently of Proposition 1. Nonetheless,

we point out that in general such closed-form solution for

P−1
u does not imply directly a closed-form for P̂u (such as

the one obtained in Proposition 1).

C. Repeated Poles Extension of the Main Result

Finally, the study of repeated poles is also of interest, but it

is also more complex. Nonetheless as an example we present

next the case of a pair of repeated eigenvalues.

Example 3: We treat in the present example the case that

Au contains a pair of repeated eigenvalues in R+, that is we

have

Au =

[
p1 1
0 p1

]

, Bu =

[
0
1

]

. (15)

The closed-form solution of the minimum energy Riccati

equation (3), with Au and Bu as above, is given by

P̂u =

[
8p3

1 4p2
1

4p2
1 4p1

]

.

We can confirm this by directly replacing the above solution

in (3), with Au and Bu as in (15) and R = 1.

The above example illustrates how hard it can be, when

considering repeated unstable eigenvalues, to gain sufficient

insight into the minimum energy problem as to find P̂u in

closed-form. At the very least, as a first step to pursue such

extension, there is the need to extend [7, Theorem 1] to

repeated unstable eigenvalues.

IV. CONCLUSION

In the present paper we have obtained a continuous-time

closed-form solution for a class of Minimum Energy alge-

braic Riccati equations. This particular class is characterised

by Riccati equations which consider only distinct eigenvalues

for the spectrum of Au and a vanishing state weight. As

an example we have compared the closed-form result to

the one obtained using the command care in Matlab, both

numerically and theoretically. Future research will consider

lifting the condition of distinct eigenvalues for Au, as well

as the study of multiple input multiple output systems and

the dual discrete-time minimum energy ARE case.

V. APPENDIX

We present here two lemmas required in the proof of

Proposition 1.

Lemma 1: the following equality holds

ko∑

j=1

2pko+1

pi + pj

qj

pj − pko+1
+

tko+1

pi + pko+1
= 0, ∀i = 1, · · · , ko,

(16)

where qj = 2pj

∏ko

l=1
l 6=j

pj+pl

pj−pl
and tko+1 =

2pko+1

∏ko

l=1
pko+1+pl

pko+1−pl
.

Proof: observe that (16) can be rewritten as

2pko+1

ko∑

j=1

1

pi + pj

qj

pj − pko+1
+

2pko+1

∏ko

l=1
pko+1+pl

pko+1−pl

pi + pko+1
.

(17)
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More so the term

∏ko
l=1

pko
+pl

pko
−pl

pi+pko+1
can be decomposed in a partial

fraction expansion such as

∏ko

l=1
pko+1+pl

pko+1−pl

pi + pko+1
=

∏ko

l=1
l 6=i

pko+1 + pl

∏ko

l=1 pko+1 − pl

=

ko∑

l=1

1

pi + pl

ql

pko+1 − pl

,

which replaced in (17) gives

2pko+1

ko∑

j=1

1

pi + pj

qj

pj − pko+1

+ 2pko+1

ko∑

l=1

1

pi + pl

ql

pko+1 − pl

,

and thus

2pko+1

ko∑

j=1

1

pi + pj

qj

pj − pko+1

− 2pko+1

ko∑

l=1

1

pi + pl

ql

pl − pko+1
= 0,

which ends the proof.

Lemma 2: assume ri as in (6), then the following equality

holds
m∑

j=1

rj

pi + pj

= 1, ∀i = 1, · · · , m.

Proof: the following proof is based on an induction

argument:

1) For m = 1 we have 2p1/2p1 = 1.

2) Assume the case m = ko

ko∑

j=1

qj

pi + pj

= 1, ∀i = 1, · · · , m, (18)

to be true for any i = 1, · · · , ko with qj =

2pj

∏ko

l=1
l 6=j

pj+pl

pj−pl
.

3) To prove the case m = ko + 1 start from (18) and

observe that by applying Lemma 1 we have ∀i =
1, · · · , ko, that

ko∑

j=1

qj

pi + pj

+

ko∑

j=1

2pko+1

pi + pj

qj

pj − pko+1
+

tko+1

pi + pko+1
= 1,

where tko+1 = 2pko+1

∏ko

i=1
pko+1+pi

pko+1−pi
and in general

tj = 2pj

∏ko+1
l=1
l 6=j

pj+pl

pj−pl
. Rearrange terms to observe

that

ko∑

j=1

(

1 +
2pko+1

pj − pko+1

)
qj

pi + pj

+
tko+1

pi + pko+1
= 1,

thus

ko∑

j=1

(
pj + pko+1

pj − pko+1

)
qj

pi + pj

+
tko+1

pi + pko+1

=

ko∑

j=1

tj
pi + pj

+
tko+1

pi + pko+1
,

and
ko+1∑

j=1

tj
pi + pj

= 1, ∀i = 1, · · · , ko.

4) Finally for the case of m = ko + 1 and i = ko + 1
consider the following development

ko+1∑

j=1

rj

pko+1 + pj

=

ko∑

j=1

rj

pko+1 + pj

+
rko+1

pko+1 + pko+1

=

ko∑

j=1

qj

pj − pko+1
+

ko∏

l=1

pko+1 + pl

pko+1 − pl

=

ko∑

j=1

qj

pj − pko+1
+

ko∑

j=1

qj

pko+1 − pj

+ 1 = 1,

which ends the proof.
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